Nanoconjugate-bound adenosine A1 receptor antagonist enhances recovery of breathing following acute cervical spinal cord injury.
نویسندگان
چکیده
Respiratory complications in patients with spinal cord injury (SCI) are common and can have a negative impact on the quality of patients' lives. Previously, we found that intradiaphragmatic administration of the nanoconjugate-bound A1 adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) induced recovery of diaphragm function following SCI in rats. When administered immediately following the injury, recovery was observed as early as 3days following SCI and it persisted until the end of the study, 28days after the drug delivery. The recovery was observed using diaphragmatic electromyography (EMG) as well as phrenic nerve recordings; both of which were conducted under anesthetized conditions. Confounding effects of anesthetic may make data interpretation complex in terms of the impact on overall ventilatory function and clinical relevance. The objective of the present study was to test the hypothesis that intradiaphragmatic administration of nanoconjugate-bound DPCPX, enhances recovery of ventilation following SCI in the unanesthetized rat. To that end, Sprague-Dawley rats underwent C2 spinal cord hemisection (C2Hx) on day 0 and received either: (i) 0.15μg/kg of nanoconjugate-bound DPCPX or (ii) vehicle control (50μl distilled water). To assess ventilation, unrestrained whole body plethysmography (WBP) was performed on day 0 (immediately before the surgery) and 3, 7, 14, 21 and 28days following the SCI. Frequency, tidal volume, and minute ventilation data were analyzed in two minute bins while the animal was calm and awake. We found that a single administration of the nanoconjugate-bound A1 adenosine receptor antagonist facilitated recovery of tidal volume and minute ventilation following SCI. Furthermore, the treatment attenuated SCI-associated increases in respiratory frequency. Taken together, this study suggests that the previously observed DPCPX nanoconjugate-induced recovery in diaphragmatic and phrenic motor outputs may translate to a clinically meaningful improvement in ventilatory function in patients with SCI.
منابع مشابه
Transporter Protein-Coupled DPCPX Nanoconjugates Induce Diaphragmatic Recovery after SCI by Blocking Adenosine A1 Receptors.
UNLABELLED Respiratory complications in patients with spinal cord injury (SCI) are common and have a negative impact on the quality of patients' lives. Systemic administration of drugs that improve respiratory function often cause deleterious side effects. The present study examines the applicability of a novel nanotechnology-based drug delivery system, which induces recovery of diaphragm funct...
متن کاملEffect of Adenosine on Hyperalgesia after Spinal Cord Injury
*Morino, T; +*Ogata, T; *Horiuchi, H; *Hamamoto, Y; *Hino, M; *Yamamoto, H +*Department of Orthopaedic Surgery, Ehime University, Shitsukawa, Tohon city, Ehime 791-0295, JAPAN [email protected] Introduction After spinal cord injury, severe sensory disturbances occur, accompanied by motor deficiencies. Some patients with spinal cord injury complain of feeling several kinds of pain sensations...
متن کاملSpinal noradrenergic activation mediates allodynia reduction from an allosteric adenosine modulator in a rat model of neuropathic pain.
Activation of adenosine A1 receptors by endogenous adenosine or synthetic agonists produces anti-nociception in animal models of acute pain and also reduces hypersensitivity in models of inflammatory and nerve-injury pain. Allosteric adenosine modulators facilitate adenosine agonist binding to the A1 receptor. The purpose of the current study was to examine the effect, mechanisms of action, and...
متن کاملAdenosine reduces glutamate release in rat spinal synaptosomes.
BACKGROUND A1 adenosine receptor activation reduces hypersensitivity in animal models of chronic pain, but intrathecal adenosine does not produce analgesia to acute noxious stimuli. Here, the authors test whether increased inhibition by adenosine of glutamate release from afferents after injury accounts for this difference. METHODS Synaptosomes were prepared from the dorsal half of the lumbar...
متن کاملSpinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury.
Respiratory insufficiency is the leading cause of death after high-cervical spinal cord injuries (SCIs). Although respiratory motor recovery can occur with time after injury, the magnitude of spontaneous recovery is limited. We hypothesized that partial respiratory motor recovery after chronic cervical SCI could be strengthened using a known stimulus for spinal synaptic enhancement, intermitten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 292 شماره
صفحات -
تاریخ انتشار 2017